求函数值域(最值)的方法总结及练习:
1.判别式法求函数值域(最值)――对分式函数(分子或分母中有一个是二次)都可通用,但这类题型有时也可以用其它方法进行求解,不必拘泥在判别式法上,也可先通过部分分式后,再利用均值不等式:
①型,可直接用不等式性质,如
求的值域
(答:)
②型,先化简,再用均值不等式,如
(1)求的值域
(答:);
(2)求函数的值域
(答:)
③型,通常用判别式法;如
已知函数的定义域为R,值域为[0,2],求常数的值
(答:)
④型,可用判别式法或均值不等式法,如
求的值域
(答:)
2.换元法求函数值域(最值)――通过换元把一个较复杂的函数变为简单易求值域的函数,其函数特征是函数解析式含有根式或三角函数公式模型,如
(1)的值域为_____
(答:);
(2)的值域为_____
(答:)
(3)的值域为____
(答:);
(4)的值域为____
(答:);
3.函数有界性法求函数值域(最值)――直接求函数的值域困难时,可以利用已学过函数的有界性,来确定所求函数的值域,最常用的就是三角函数的有界性,如
求函数,,的值域
(答: 、(0,1)、);
4.单调性法求函数值域(最值)――利用一次函数,反比例函数,指数函数,对数函数等函数的单调性,如
求,,的值域
(答:、、);
5.数形结合法求函数值域(最值)――函数解析式具有明显的某种几何意义,如两点的距离、直线斜率、等等,如
(1)已知点在圆上,求及的取值范围
(答:、);
(2)求函数的值域
(答:);
(3)求函数及的值域
(答:、)
,求函数值域(最值)的方法总结及练习tag: 高中数学试题库,高中数学题库,高中数学题,高中数学试题,高中学习 - 高中数学 - 高中数学试题库