幼教  教案  范文  作文  资格考试  高中教学  【网站地图】 【+收藏本站
在线投稿
您当前位置:乐学网学习网高中学习高中数学高中数学知识点导数与函数的单调性的关系

导数与函数的单调性的关系

11-07 15:31:02   浏览次数:762  栏目:高中数学知识点
标签:高中数学知识点总结,高中数学知识点归纳,http://www.lexue88.com 导数与函数的单调性的关系,

导数与函数的单调性的关系
㈠ 与 为增函数的关系。
能推出 为增函数,但反之不一定。如函数 在 上单调递增,但 ,∴ 是 为增函数的充分不必要条件。
㈡ 时, 与 为增函数的关系。
若将 的根作为分界点,因为规定 ,即抠去了分界点,此时 为增函数,就一定有 。∴当 时, 是 为增函数的充分必要条件。
㈢ 与 为增函数的关系。
为增函数,一定可以推出 ,但反之不一定,因为 ,即为 或 。当函数在某个区间内恒有 ,则 为常数,函数不具有单调性。∴ 是 为增函数的必要不充分条件。
函数的单调性是函数一条重要性质,也是高中阶段研究的重点,我们一定要把握好以上三个关系,用导数判断好函数的单调性。因此新教材为解决单调区间的端点问题,都一律用开区间作为单调区间,避免讨论以上问题,也简化了问题。但在实际应用中还会遇到端点的讨论问题,要谨慎处理。
㈣单调区间的求解过程,已知  
(1)分析 的定义域;
(2)求导数
 

(3)解不等式,解集在定义域内的部分为增区间 (4)解不等式,解集在定义域内的部分为减区间。,导数与函数的单调性的关系
《导数与函数的单调性的关系》相关文章

tag: , 高中数学知识点,高中数学知识点总结,高中数学知识点归纳,高中学习 - 高中数学 - 高中数学知识点

发表评论
发表读后感言(游客无需登录,即可直接发表感言。)
匿名评论  
联系我们 | 网站地图 | 幼教大全 | 免费教案 | 范文大全 | 作文大全 | 资格考试 | 高中教学