幼教  教案  范文  作文  资格考试  高中教学  【网站地图】 【+收藏本站
在线投稿
您当前位置:乐学网学习网高中学习高中数学高中数学知识点圆锥曲线方程总结

圆锥曲线方程总结

11-07 15:31:02   浏览次数:269  栏目:高中数学知识点
标签:高中数学知识点总结,高中数学知识点归纳,http://www.lexue88.com 圆锥曲线方程总结,
1.椭圆焦半径公式:设P(x0,y0)为椭圆 (a>b>0)上任一点,焦点为F1(-c,0),F2(c,0),则 (e为离心率);
2.双曲线焦半径公式:设P(x0,y0)为双曲线 (a>0,b>0)上任一点,焦点为F1(-c,0),F2(c,0),则:(1)当P点在右支上时, ;
(2)当P点在左支上时, ;(e为离心率);
另:双曲线 (a>0,b>0)的渐近线方程为 ;
3.抛物线焦半径公式:设P(x0,y0)为抛物线y2=2px(p>0)上任意一点,F为焦点,则 ;y2=2px(p<0)上任意一点,F为焦点,则 ;
4. 求轨迹的常用方法:
(1)直接法:直接通过建立x、y之间的关系,构成F(x,y)=0,是求轨迹的最基本的方法;
(2)待定系数法:所求曲线是所学过的曲线:如直线,圆锥曲线等,可先根据条件列出所求曲线的方程,再由条件确定其待定系数,代回所列的方程即可;
(3)代入法(相关点法或转移法):若动点P(x,y)依赖于另一动点Q(x1,y1)的变化而变化,并且Q(x1,y1)又在某已知曲线上,则可先用x、y的代数式表示x1、y1,再将x1、y1带入已知曲线得要求的轨迹方程;
(4)定义法:如果能够确定动点的轨迹满足某已知曲线的定义,则可由曲线的定义直接写出方程;
(5)参数法:当动点P(x,y)坐标之间的关系不易直接找到,也没有相关动点可用时,可考虑将x、y均用一中间变量(参数)表示,得参数方程,再消去参数得普通方程。
5.共渐进线 的双曲线标准方程为 为参数, ≠0);
6.计算焦点弦长可利用上面的焦半径公式,
一般地,若斜率为k的直线被圆锥曲线所截得的弦为AB, A、B两点分别为A(x1,y1)、B(x2,y2),则弦长
,这里体现了解析几何“设而不求”的解题思想;
7.椭圆、双曲线的通径(最短弦)为 ,焦准距为p= ,抛物线的通径为2p,焦准距为p; 双曲线 (a>0,b>0)的焦点到渐进线的距离为b;
8.中心在原点,坐标轴为对称轴的椭圆,双曲线方程可设为Ax2+Bx2=1;
9.抛物线y2=2px(p>0)的焦点弦(过焦点的弦)为AB,A(x1,y1)、B(x2,y2),则有如下结论:(1) =x1+x2+p;(2)y1y2=-p2,x1x2= ;
10. 处理椭圆、双曲线、抛物线的弦中点问题常用代点相减法,设A(x1,y1)、B(x2,y2)为椭圆 (a>b>0)上不同的两点,M(x0,y0)是AB的中点,则KABKOM= ;对于双曲线 (a>0,b>0),类似可得:KAB.KOM= ;对于y2=2px(p≠0)抛物线有KAB=  11.对于y2=2px(p≠0)抛物线上的点的坐标可设为( ,y0),以简化计算;
12. 过椭圆 (a>b>0)左焦点的焦点弦为AB,则 ,过右焦点的弦 ;
,圆锥曲线方程总结
《圆锥曲线方程总结》相关文章
发表评论
发表读后感言(游客无需登录,即可直接发表感言。)
匿名评论  
联系我们 | 网站地图 | 幼教大全 | 免费教案 | 范文大全 | 作文大全 | 资格考试 | 高中教学