《中位数和众数》,一课是新课改后新增的内容,什么是中位数,什么是众数,有什么应用价值。什么是中位数和众数比较好理解,但是,为什么学习中位数和众数呢?平时生活中,我们用得最广的是平均数,对平均数的体验也较多,要学生舍弃平均数选用中位数和众数体验的过程就需要相当地清晰。因此,我把课的难点定位为:理解中位数和众数的意义,即学习中位数和众数的必要性;教学的重点是理解中位数和众数的意义,掌握求中位数和众数的方法。
一、创设情境,引发认知冲突。
这节课创设情境时,我选择了学生都喜欢熟悉的小品演员:赵本山和范伟。围绕范伟到赵本山地公司去应聘被“公司员工的平均工资2500元”信息所忽悠而引发的故事而展开。广告是否符合实际呢?学生产生疑问。“问题是数学的心脏”,有了问题才会思索,有了问题才可以引发学生认识上的冲突。这是一个生活中的真实问题,通过学生的独立思考和交流,引起了学生对“月工资水平”的认知冲突,发现单靠“平均数”来描述数据特征有时是不合适的,从而激发了学生的学习兴趣。
二、在分析讨论中促进学生对概念的理解。
中位数和众数的概念,我没有直接给出,主要让学生通过小组的合作学习,交流讨论,自己得出概念。在讨论中认识到不按顺序排列,处于中间的数是不确定,而从小到大或从大到小排列后中位数是确定,从而理解求中位数时,数据应该排序。
通过学生观察、分析、讨论、在共享集体思维成果的基础上逐步建构出这两个概念,这样做使学生逐步体会到这两个统计量都反映一组数据的集中趋势,但是描述的角度并不同,这样可以比较全面、正确地理解所学知识。在教学中,对学生的各种回答给予肯定,各人从不同的角度理解会得到不同的结论。然后通过学生合作交流,相互完善,在自主探索中发现概念的形成过程。让学生认识到研究数据的必要性。由于第一次是公司员工的工资表,出现的一组数据的个数是奇数,直接找中间的数作为中位数。第二次我出示了在增加了范伟之后的工资表学生发现这一组数据的个数是偶数。学生问:“一组数据的个数是偶数该怎么办?”多好的问题,这一问题引发起其他学生的思考。我让学生讨论,学生争执不下,有人主张一个,有主张两个的,这时我让学生自学,看书上有没有教我们。这时有学生读出教材的方法:当一组数据的个数是偶数时,中位数取中间两个数的平均数。根据学生的提问,我立即与学生一起构建求中位数的思维导图,帮助学生梳理求中位数的方法与步骤。
在学生描述的基础上 ,我适当补充说明:“中位数”中“中位”是指位置居于中间,即某个数据在按照大小顺序排列的一组数据中,位置处于最中间的数。(或最中间两个数据的平均数)。“众数”中“众”即多,也就是某个数据在一组数据中出现次数最多。形象语言的描述让学生更易理解、掌握这两个概念。
三、在学以致用中体会区别
这一环节,由浅入深设置问题串,使学生思维分层递进,目的是突出本节重点,分解了难点;通过追问层层引导,启发学生运用类比、归纳、猜想等思维方法探究问题,揭示概念的实质,不断完善知识结构。
练习的设计,我紧紧围绕生活实际,在不同的具体问题中分别求平均数,中位数,众数,目的是为了比较三个量在描述一组数据集中趋势时的不同角度,有助于了解三个概念之间的联系与区别,让学生学以致用,知道并熟练运用中位数和众数的概念,平均数去解决生活中的实际问题。这样更加具有很强的生活色彩,让学生体现了众数,中位数在日常生活中的应用。使学生深刻体会数学源于生活,同时也服务于生活。
通过这节课的学习,我感到学生的参与性很强,乐于与同伴交流、探索知识对于新知识的掌握较好。但要达到在生活中灵活运用,还有待于进一步加强联系巩固。