教学目标
知识技能
1、 理解一元二次方程的概念.
2、掌握一元二次方程的一般形式,正确认识二次项系数、一次项系数及常数项.
教学思考
1、通过一元二次方程的引入,培养学生建模思想,归纳、分析问题及解决问题的能力.
2、 通过一元二次方程概念的学习,培养学生对概念理解的完整性和深刻性.
3、由知识来源于实际,树立转化的思想,由设未知数、列方程向学生渗透方程的思想,从而进一步提高学生分析问题、解决问题的能力.
解决问题
在分析、揭示实际问题的数量关系并把实际问题转化为数学模型(一元二次方程)的过程中使学生感受方程是刻画现实世界数量关系的工具,增加对一元二次方程的感性认识.
情感态度
1、培养学生主动探究知识、自主学习和合作交流的意识.
2、激发学生学数学的兴趣,体会学数学的快乐,培养用数学的意识.
重点
一元二次方程的概念及一般形式.
难点
1、由实际问题向数学问题的转化过程.
2、正确识别一般式中的“项”及“系数”.
教学流程安排
活动流程图
活动内容和目的
活动1 创设情境 引入新课
活动2 启发探究 获得新知
活动3 运用新知 体验成功
活动4 归纳小结 拓展提高
活动5 布置作业 分层落实
复习一元一次方程有关概念;通过实际问题引入新知。
通过类比一元一次方程的概念和一般形式,让学生获得一元二次方程的有关概念。
巩固训练,加深对一元二次方程有关概念的理解。
回顾梳理本节内容,拓展提高学生对知识的理解。
分层次布置作业,提高学生学习数学的兴趣。
教学过程设计
问题与情景
师生行为
设计意图
「活动1」
问题1:
2008年奥运会将在北京举办,许多大学生都希望为奥运奉献自己的一份力量。现组委会决定对高校奥运志愿者进行分批培训,由已合格人员培训第一轮人员,再由前面所有合格人员培训第二轮人员,以此类推来完成此次培训任务。
某高校学生李红已受训合格,成为一名志愿者,并由她负责培训本校志愿者。若每轮培训中每个志愿者平均培训x人。
(1)已知经过第一轮培训后该校共有11人合格, 请列出满足条件的方程:
(2)若两轮培训后该校共有121人合格,你能列出满足条件的方程吗?
问题2:
有一块矩形铁皮,长100cm,宽50cm,在它的四角各切去一个正方形,然后将四周突出部分折起,就能制作一个无盖方盒.如果要制作的无盖方盒底面积为3600cm2,那么铁皮各角应切去多大的正方形?
问题3:
我校为丰富校园文化氛围,要设计一座2米高的人体雕像,使雕像的上部(腰以上)与全部高度的乘积,等于下部(腰以下)高度的平方,求雕像下部的高度 .
通过多媒体播放视频短片,引入情境,提出问题.在第(1)问中,通过教师引导,学生列出方程,解决问题.
在第(2)问中,遵循刚才解决问题的思路,由学生思考,列出方程.
活动中教师应重点关注:
学生对题目的理解,可举例,由特殊到一般,帮助学生理解题意,从而引导学会列出满足条件的方程
通过多媒体演示,把文字转化为图形,帮助学生理解题意,从而由学生独立思考,列出满足条件的方程.
此题是与实际问题结合的题目,通过演示高度关系,帮助学生理解题意,从而列出符合题意的方程。
通过创设情境,引导学生复习一元一次方程的概念和一般形式,为后面学习一元二次方程的有关内容做好铺垫.
通过解决实际问题引入一元二次方程的概念,同时可提高学生利用方程思想解决实际问题的能力.
通过解决实际问题引入一元二次方程的概念.
让学生通过数形结合的方法,转化实际问题,从而得到方程,为引入一元二次方程的概念做好准备.
问题与情景
师生行为
设计意图
「活动2」
1、一元二次方程的概念:
等号两边都是整式,只含有一个未知数,并且未知数的最高次数是2的方程,叫做一元二次方程。
眼疾口快:
请抢答下列各式是否为一元二次方程:
2、 2、一元二次方程的一般式:
3、
由以上问题得到3个方程,
由学生观察归纳这3个方程的特征,给出名称并类比一元一次方程的定义,得出一元二次方程的定义.
活动中教师应重点关注:
(1) 引导学生观察所列出的3个方程的特点;
(2) 让学生类比前面复习过的一元一次方程定义得到一元二次方程定义.
tag: , 九年级数学教学设计,九年级数学教学设计大全,教学设计 - 数学教学设计 - 九年级数学教学设计