(如果学生能将3个竖式合并为C竖式,可以引导学生重点讨论如下几个问题:230的个位上的“0”可不可以不写?如果擦去“0”,大家会不会把它当成“23”,为什么?如果不写“0”除了少写一个数字,还有什么好处呢?学生充分讨论后,教师再让学生通过看竖式发现:乘完个位乘十位,十位上的1乘3得3,对齐4的下面写3,1乘2得2,在4的前面写2。这样算的时候不写“0”,可以简便我们的计算过程。)
(设计意图:引导学生经历将口算的横式写成竖式的形式,将几个竖式合并,再将竖式进一步简化的过程。同时在此过程中学生也很清晰的看出每一部分的来龙去脉,更容易的理解算理。)
4.进一步明算理
引导学生分别说一说46是怎么来的?表示什么?23表示什么?怎么来的?尤其要明确23写在百位和十位上就是表示23个十,也就是230。
(设计意图:抓住关键,进一步明晰算理。)
5.规范计算过程
师生共同梳理计算的过程。
2 3
×1 2
师:先用个位上的2和23相乘。(板书)
2 3
↖↑
× 1 2
4 6
师:再用十位上的1和23相乘。一三得三,3写在哪里?为什么?
师:在十位下面写3就表示3个十了。一二得二,2写在哪?为什么?
2 3
↑↗
×1 2
4 6
2 3
2 7 6
师:竖式中的46是怎么来的?23实际上是多少?它是怎么来的?
(板书:23×2和23×10)
2 3
↖↑
×1 2
4 6——23×2
2 3 ——23×10
2 7 6
(设计意图:清晰再现计算过程,进一步明确算法。)
6.练习
独立用竖式计算21×43,集体订正时说一说计算过程以及每一步分别是怎么算出来的。
(设计意图:紧扣新知,及时巩固。)
三、巩固练习
1.根据竖式写得数。
师:你是从竖式中的哪一部分看出来的?
(设计意图:进一步巩固算理。)
2.你能很快判断出对错吗?
42×21=126(出示横式,不出竖式)
(学生可能根据个位上的数进行判断,也可能利用估算进行判断)
找错因,明算理。(出示竖式)
(设计意图:有老师提出练习量小的问题,我个人认为本节课探索算法、理解算理的过程需充分展开,后面供练习的时间是很有限的,这些练习也不一定能处理完。一节课的时间是有限的40分钟,要抓住重点内容充分展开、透彻理解,至于计算技能的形成,后面肯定还要安排1—2课时专门进行相关练习,所有过程不可能在一节课中全部展示。)
四、总结
师:你觉得在用竖式计算两位数乘两位数时应注意什么?
师:是呀,在用个位上的数去乘时,得数的末位要和个位对齐,用十位上的数去乘时,得数的末位就要和十位对齐。
师:你还有哪些收获呢?(比如:转化的方法,横式变竖式的过程等)
(设计意图:在打磨过程中,有老师提出总结不应仅仅总结算法,还应总结学习方法上的收获。)
tag: 教学 , 三年级数学教学设计,三年级数学教学设计大全,教学设计 - 数学教学设计 - 三年级数学教学设计