乘法原理和加法原理是两个重要而常用的计数法则,在应用时一定要注意它们的区别。乘法原理是把一件事分几步完成,这几步缺一不可,所以完成任务的不同方法数等于各步方法数的乘积;加法原理是把完成一件事的方法分成几类,每一类中的任何一种方法都能完成任务,所以完成任务的不同方法数等于各类方法数之和。 例3两次掷一枚骰子,两次出现的数字之和为偶数的情况有多少种? 分析与解:两次的数字之和是偶数可以分为两类,即两数都是奇数,或者两数都是偶数。 因为骰子上有三个奇数,所以两数都是奇数的有3×3=9(种)情况;同理,两数都是偶数的也有9种情况。根据加法原理,两次出现的数字之和为偶数的情况有9+9=18(种)。 例4用五种颜色给右图的五个区域染色,每个区域染一种颜色,相邻的区域染不同的颜色。问:共有多少种不同的染色方法? 分析与解:本题与上一讲的例4表面上十分相似,但解法上却不相同。因为上一讲例4中,区域A与其它区域都相邻,所以区域A与其它区域的颜色都不相同。本例中没有一个区域与其它所有区域都相邻,如果从区域A开始讨论,那么就要分区域A与区域E的颜色相同与不同两种情况。 当区域A与区域E颜色相同时,A有5种颜色可选;B有4种颜色可选;C有3种颜色可选;D也有3种颜色可选。根据乘法原理,此时不同的染色方法有 5×4×3×3=180(种)。 当区域A与区域E颜色不同时,A有5种颜色可选;E有4种颜色可选;B有3种颜色可选;C有2种颜色可选;D有2种颜色可选。根据乘法原理,此时不同的染色方法有 5×4×3×2×2=240(种)。 再根据加法原理,不同的染色方法共有 180+240=420(种)。 例5用1,2,3,4这四种数码组成五位数,数字可以重复,至少有连续三位是1的五位数有多少个? 分析与解:将至少有连续三位数是1的五位数分成三类:连续五位是1、恰有连续四位是1、恰有连续三位是1。 连续五位是1,只有11111一种; 中任一个,所以有3+3=6(种); 3×4+4×3+3×3=33(种)。 由加法原理,这样的五位数共有 1+6+33=40(种)。 在例5中,我们先将这种五位数分为三类,以后在某些类中又分了若干种情况,其中使用的都是加法原理。 例6右图中每个小方格的边长都是1。一只小虫从直线AB上的O点出发,沿着横线与竖线爬行,可上可下,可左可右,但最后仍要回到AB上(不一定回到O点)。如果小虫爬行的总长是3,那么小虫有多少条不同的爬行路线? 分析与解:如果小虫爬行的总长是2,那么小虫从AB上出发,回到AB上,其不同路线有6条(见左下图);小虫从与AB相邻的直线上出发,回到AB上,其不同路线有4条(见右下图)。
tag: , 四年级数学教学设计,四年级数学教学设计大全,教学设计 - 数学教学设计 - 四年级数学教学设计