第5讲 弃九法
从第4讲知道,如果一个数的各个数位上的数字之和能被9整除,那么这个数能被9整除;如果一个数各个数位上的数字之和被9除余数是几,那么这个数被9除的余数也一定是几。利用这个性质可以迅速地判断一个数能否被9整除或者求出被9除的余数是几。 例如,3645732这个数,各个数位上的数字之和为 3+6+4+5+7+3+2=30, 30被9除余3,所以3645732这个数不能被9整除,且被9除后余数为3。 但是,当一个数的数位较多时,这种计算麻烦且易错。有没有更简便的方法呢? 因为我们只是判断这个式子被9除的余数,所以凡是若干个数的和是9时,就把这些数划掉,如3+6=9,4+5=9,7+2=9,把这些数划掉后,最多只剩下一个3(如下图),所以这个数除以9的余数是3。 这种将和为9或9的倍数的数字划掉,用剩下的数字和求除以9的余数的方法,叫做弃九法。 一个数被9除的余数叫做这个数的九余数。利用弃九法可以计算一个数的九余数,还可以检验四则运算的正确性。 例1 求多位数7645821369815436715除以9的余数。 分析与解:利用弃九法,将和为9的数依次划掉。 只剩下7,6,1,5四个数,这时口算一下即可。口算知,7,6,5的和是9的倍数,又可划掉,只剩下1。所以这个多位数除以9余1。 例2 将自然数1,2,3,…依次无间隔地写下去组成一个数1234567891011213…如果一直写到自然数100,那么所得的数除以9的余数是多少? 分析与解:因为这个数太大,全部写出来很麻烦,在使用弃九法时不能逐个划掉和为9或9的倍数的数,所以要配合适当的分析。我们已经熟知 1+2+3+…+9=45, 而45是9的倍数,所以每一组1,2,3,…,9都可以划掉。在1~99这九十九个数中,个位数有十组1,2,3,…,9,都可划掉;十位数也有十组1,2,3,…,9,也都划掉。这样在这个大数中,除了0以外,只剩下最后的100中的数字1。所以这个数除以9余1。 在上面的解法中,并没有计算出这个数各个数位上的数字和,而是利用弃九法分析求解。本题还有其它简捷的解法。因为一个数与它的各个数位上的数字之和除以9的余数相同,所以题中这个数各个数位上的数字之和,与1+2+…+100除以9的余数相同。 利用高斯求和法,知此和是5050。因为5050的数字和为5+0+5+0=10,利用弃九法,弃去一个9余1,故5050除以9余1。因此题中的数除以9余1。 例3 检验下面的加法算式是否正确: 2638457+3521983+6745785=12907225。 分析与解:若干个加数的九余数相加,所得和的九余数应当等于这些加数的和的九余数。如果不等,那么这个加法算式肯定不正确。上式中,三个加数的九余数依次为8,4,6,8+4+6的九余数为0;和的九余数为1。因为0≠1,所以这个算式不正确。 例4 检验下面的减法算式是否正确: 7832145-2167953=5664192。 分析与解:被减数的九余数减去减数的九余数(若不够减,可在被减数的九余数上加9,然后再减)应当等于差的九余数。如果不等,那么这个减法计算肯定不正确。上式中被减数的九余数是3,减数的九余数是6,由(9+3)-6=6知,原题等号左边的九余数是6。等号右边的九余数也是6。因为6=6,所以这个减法运算可能正确。 值得注意的是,这里我们用的是“可能正确”。利用弃九法检验加法、减法、乘法(见例5)运算的结果是否正确时,如果等号两边的九余数不相等,那么这个算式肯定不正确;如果等号两边的九余数相等,那么还不能确定算式是否正确,因为九余数只有0,1,2,…,8九种情况,不同的数可能有相同的九余数。所以用弃九法检验运算的正确性,只是一种粗略的检验。 例5 检验下面的乘法算式是否正确: 46876×9537=447156412。 分析与解:两个因数的九余数相乘,所得的数的九余数应当等于两个因数的乘积的九余数。如果不等,那么这个乘法计算肯定不正确。上式中,被乘数的九余数是4,乘数的九余数是6,4×6=24,24的九余数是6。乘积的九余数是7。6≠7,所以这个算式不正确。 说明:因为除法是乘法的逆运算,被除数=除数×商+余数,所以当余数为零时,利用弃九法验算除法可化为用弃九法去验算乘法。例如,检验383801÷253=1517的正确性,只需检验1517×253=383801的正确性。tag: , 四年级数学教学设计,四年级数学教学设计大全,教学设计 - 数学教学设计 - 四年级数学教学设计