标签:八年级数学教学设计大全,http://www.lexue88.com
平行四边形较难练习题,
1、已知:平行四边形ABCD中,E在AC上,AE=2EC,F在AB上,BF=2AF,若△BEF的面积为2,则平行四边形ABCD的面积是___________.
2、平行四边形ABCD中,∠ADC=60°,AF⊥BC于F,AF交BD于E,若DE=2CD,则∠AED=_________
3、在平行四边形ABCD中,AE=CF,AE与CF交于点O,连OB,求证:∠AOB=∠COB。
4、在等腰△ABC的腰AB上取一点D,另一腰AC的延长线上取一点E,使CE=BD,连DE,求证:DE﹥BC。(提示:构造平行四边形!)
5、如图,线段AB=CD,AB、CD相交于点O,且∠AOC=60°,
求证:AC+BD﹥AB。(提示:构造平行四边形!)
再复习一下平行四边形:
平行四边形是一种极重要的几何图形.这不仅是因为它是研究更特殊的平行四边形——矩形、菱形、正方形的基础,还因为由它的定义知它可以分解为一些全等的三角形,并且包含着有关平行线的许多性质,因此,它在几何图形的研究上有着广泛的应用.
由平行四边形的定义决定了它有以下几个基本性质:
(1)平行四边形对角相等,邻角互补;
(2)平行四边形对边平行且相等;
(3)平行四边形对角线互相平分.
除了定义以外,平行四边形还有以下几种判定方法:
(1)两组对边分别相等的四边形是平行四边形;
(2)对角线互相平分的四边形是平行四边形;
(3)一组对边平行且相等的四边形是平行四边形.
例1 如图2-32所示.在 ABCD中,AE⊥BC,CF⊥AD,DN=BM.求证:EF与MN互相平分.
分析 只要证明ENFM是平行四边形即可,由已知,提供的等量要素很多,可从全等三角形下手.
证 因为ABCD是平行四边形,所以
AD BC,AB CD,∠B=∠D.
又AE⊥BC,CF⊥AD,所以AECF是矩形,从而
AE=CF.
所以
Rt△ABE≌Rt△CDF(HL,或AAS),BE=DF.又由已知BM=DN,所以
△BEM≌△DFN(SAS),
ME=NF. ①
又因为AF=CE,AM=CN,∠MAF=∠NCE,所以
△MAF≌△NCE(SAS),
所以 MF=NF. ②
由①,②,四边形ENFM是平行四边形,从而对角线EF与MN互相平分.
例2 如图2-33所示.Rt△ABC中,∠BAC=90°,AD⊥BC于D,BG平分∠ABC,EF∥BC且交AC于F.求证:AE=CF.
分析 AE与CF分处于不同的位置,必须通过添加辅助线使两者发生联系.若作GH⊥BC于H,由于BG是∠ABC的平分线,故AG=GH,易知△ABG≌△HBG.又连接EH,可证△ABE≌△HBE,从而AE=HE.这样,将AE“转移”到EH位置.设法证明EHCF为平行四边形,问题即可获解.
证 作GH⊥BC于H,连接EH.因为BG是∠ABH的平分线,GA⊥BA,所以GA=GH,从而
△ABG≌△HBG(AAS),
所以 AB=HB. ①
在△ABE及△HBE中,
∠ABE=∠CBE,BE=BE,
所以 △ABE≌△HBE(SAS),
所以 AE=EH,∠BEA=∠BEH.
下面证明四边形EHCF是平行四边形.
因为AD∥GH,所以
∠AEG=∠BGH(内错角相等). ②
又∠AEG=∠GEH(因为∠BEA=∠BEH,等角的补角相等),∠AGB=∠BGH(全等三角形对应角相等),所以
∠AGB=∠GEH.
从而
EH∥AC(内错角相等,两直线平行).
由已知EF∥HC,所以EHCF是平行四边形,所以
FC=EH=AE.
说明 本题添加辅助线GH⊥BC的想法是由BG为∠ABC的平分线的信息萌生的(角平分线上的点到角的两边距离相等),从而构造出全等三角形ABG与△HBG.继而发现△ABE≌△HBE,完成了AE的位置到HE位置的过渡.这样,证明EHCF是平行四边形就是顺理成章的了.
www.lexue88.com
此题也可以过E作EH∥AC交BC于H,证法类似,但少作一条辅助线,更简洁一些。
人们在学习中,经过刻苦钻研,形成有用的经验,这对我们探索新的问题是十分有益的.
例3 如图2-34所示. ABCD中,DE⊥AB于E,BM=MC=DC.求证:∠EMC=3∠BEM.
分析 由于∠EMC是△BEM的外角,因此∠EMC=∠B+∠BEM.从而,应该有∠B=2∠BEM,这个论断在△BEM内很难发现,因此,应设法通过添加辅助线的办法,将这两个角转移到新的位置加以解决.利用平行四边形及M为BC中点的条件,延长EM与DC延长线交于F,这样∠B=∠MCF及∠BEM=∠F,因此,只要证明∠MCF=2∠F即可.不难发现,△EDF为直角三角形(∠EDF=90°)及M为斜边中点,我们的证明可从这里展开.
证 延长EM交DC的延长线于F,连接DM.由于CM=BM,∠F=∠BEM,∠MCF=∠B,所以
△MCF≌△MBE(AAS),
所以M是EF的中点.由于AB∥CD及DE⊥AB,所以,DE⊥FD,三角形DEF是直角三角形,DM为斜边的中线,由直角三角形斜边中线的性质知
∠F=∠MDC,
又由已知MC=CD,所以
∠MDC=∠CMD,
则
∠MCF=∠MDC+∠CMD=2∠F.
从而
∠EMC=∠F+∠MCF=3∠F=3∠BEM.
,平行四边形较难练习题