幼教  教案  范文  作文  资格考试  高中教学  【网站地图】 【+收藏本站
在线投稿
您当前位置:乐学网学习网教学设计数学教学设计九年级数学教学设计新人教版九年级数学下册《28.1 锐角三角函数》教学设计4

新人教版九年级数学下册《28.1 锐角三角函数》教学设计4

11-07 15:37:14   浏览次数:173  栏目:九年级数学教学设计
标签:九年级数学教学设计大全,http://www.lexue88.com 新人教版九年级数学下册《28.1 锐角三角函数》教学设计4,

(二)教科书内容
本章内容分为两节。第一节主要学习正弦、余弦和正切等锐角三角函数的概念,第二节主要研究直角三角形中的边角关系和解直角三角形的内容。第一节内容是第二节的基础,第二节是第一节的应用,并对第一节的学习有巩固和提高的作用。
在28.1节 “锐角三角函数”中,教科书先研究了正弦函数,然后在正弦函数的基础上给出余弦函数和正切函数的概念。对于正弦函数,教科书首先设置了一个实际问题,把这个实际问题抽象成数学问题,就是在直角三角形中,已知一个锐角和这个锐角的对边求斜边的问题。由于这个锐角是一个特殊的30°角,所以可以利用“在直角三角形中,30°角所对的边是斜边的一半” 这个结论来解决这个问题。接下去教科书又提出问题:如果30°角所对的边的长度发生改变,那么斜边的长变为多少?解决这个的问题仍然需要利用上述结论。这样就能够使学生体会到“无论直角三角形的大小如何,30°角所对的边与斜边的比总是一个常数”。这里体现了函数的对应思想,即30°角对应数值。接下去,教科书又设置一个“思考”栏目,让学生进一步探讨在直角三角形中,45°角所对的边与斜边的比有什么特点。利用勾股定理就可以发现这个比值也是一个常数。这样就使学生认识到“无论直角三角形的大小如何,45°角所对的边与斜边的比总是一个常数”。通过探讨上面这两个特殊的直角三角形,能够使学生感受到在直角三角形中,如果一个锐角的度数分别是30°和45°,那么它们所对的边与斜边的比都是常数。这里体现了函数的思想,也为引出正弦函数的概念作了铺垫。有了上面这样的感受,会使学生自然地想到,在直角三角形中,一个锐角取其他一定的度数时,它的对边与斜边的比是否也是常数的问题。这样教科书就进入对一般情况的讨论。对于这个问题,教科书设置了一个“探究”栏目,让学生探究对于两个大小不等的直角三角形,如果有一个锐角对应相等,那么这两个相等的锐角所对的直角边与斜边的比是否相等,利用相似三角形对应边成比例这个结论就可以得到“在直角三角形中,当锐角的度数一定时,不管三角形的大小如何,这个角的对边与斜边的比是一个固定值”。由此引出正弦函数的概念。这样引出正弦函数的概念,能够使学生充分感受到函数的思想,即在直角三角形中,对一个锐角的每一个确定的值,sin A都有唯一确定的值与它对应。在引出正弦函数的概念之后,教科书在一个“探究”栏目中,类比正弦的概念,从边与边的比的角度提出一个开放性问题:在直角三角形中,当一个锐角确定时,这个角的对边与斜边的比就随之确定,此时,其他边之间的比是否也确定了呢?提出这个问题的目的是要引出对余弦函数和正切函数的讨论。由于教科书比较详细地讨论了正弦函数的概念,所以对余弦函数和正切函数概念的讨论采用了直接给出的方式,具体的讨论由学生类比正弦函数自己完成。在余弦函数和正切函数的概念给出之后,教科书在边注中分析了锐角三角函数的角与数值之间的对应关系,突出了函数的思想。一些特殊角的三角函数值是经常用到的,教科书借助于学生熟悉的两种三角尺研究了30°、45°、60°角的正弦、余弦和正切值,并以例题的形式介绍了已知锐角三角函数值求锐角的问题,当然这时所要求出的角都是30°、45°和60°这些特殊角。教科书把求特殊角的三角函数值和已知特殊角的三角函数值求角这两个相反方向的问题安排在一起,目的是体现锐角三角函数中角与函数值之间的对应关系。本节最后,教科书介绍了如何使用计算器求非特殊角的三角函数值以及如何根据三角函数值求对应的角等内容。由于不同的计算器操作步骤有所不同,教科书只就常见的情况进行介绍。
点击下载此文件


,新人教版九年级数学下册《28.1 锐角三角函数》教学设计4
发表评论
发表读后感言(游客无需登录,即可直接发表感言。)
匿名评论  
联系我们 | 网站地图 | 幼教大全 | 免费教案 | 范文大全 | 作文大全 | 资格考试 | 高中教学