标签:八年级数学教学设计大全,http://www.lexue88.com
勾股定理的应用教学设计,
师:勾股定理的内容是什么?
生:勾股定理 直角三角形两直角边的平方和等于斜边的平方.
师:这个定理为什么是两直角边的平方和呢?
生:斜边是最长边,肯定是两个直角边的平方和等于斜边的平方,否则不正确的。
师:是这样的。在RtΔABC中,∠C=90°,有:AC
2+BC
2=AB
2,勾股定理揭示了直角三角形三边之间的关系。
今天我们来看看这个定理的应用。
新课过程
分析:
师:上面的探究,先请大家思考如何做?
(留几分钟的时间给学生思考)
师:看到这个题让我们想起古代一个笑话,说有一个人拿一根杆子进城,横着拿,不能进,竖着拿,也不能进,干脆将其折断,才解决了问题,相信同学们不会这样做。
(我略带夸张的比划、语气,学生笑声一片,有知道这个故事的,抢在我的前面说,学生欣欣然,我观察课堂气氛比较轻松,这也正是我所希望氛围,在这样的情况下,学生更容易掌握知识)
师:这里木板横着不能进,竖着不能进,只能试试将木板斜着顺进去。
师:应该比较什么?
李冬:这是一块薄木板,比较AC的长度,是否大于2.2就可以了。
师:李冬说的是正确的。请大家算出来,可以使用计算器。
解:在RtΔABC中,由题意有:
AC=
=
≈2.236
∵AC大于木板的宽
∴薄木板能从门框通过。
学生进行练习:
1、在Rt△ABC中,AB=c,BC=a,AC=b, ∠B=90゜.
①已知a=5,b=12,求c;
②已知a=20,c=29,求b
(请大家画出图来,注意不要简单机械的套a
2+b
2=c
2,要根据本质来看问题)
2、如果一个直角三角形的两条边长分别是6厘米和8厘米,那么这个三角形的周长是多少厘米?
师:对第二问有什么想法?
生:分情况进行讨论。
师:具体说说分几种情况讨论?
生:①3cm和4cm分别是直角边;②4cm是斜边,3cm是直角边。
师:呵呵,你们漏了一种情况,还有3cm是斜边,4cm是直角边的这种情况。
众生(顿感机会难得,能有一次战胜老师的机会哪能放过):啊!斜边应该大于直角边的。这种情况是不可能的。
师:你们是对的,请把这题计算出来。
(学生情绪高涨,为自己的胜利而高兴)
(这样处理对有的学生来说,印象深刻,让每一个地方都明白无误)
解:①当6cm和8cm分别为两直角边时;
斜边=
=10
∴周长为:6+8+10=24cm
②当6cm为一直角边,8cm是斜边时,
另一直角边=
=2
周长为:6+8+2
=14+2
www.lexue88.com
师:如图,看上面的探究2。
分析:
师:请大家思考,该如何去做?
陈晓玲:运用勾股定理,已知AB、BO,算出AO的长度,又∵A点下滑了0.4米,再算出OC的长度,再利用勾股定理算出OD的长度即可,最后算出BD的长度就能知道了。
师:这个思路是非常正确的。请大家写出过程。
有生言:是0.4米。
师:猜是0.4米,就是想当然了,算出来看看,是不是与你的猜测一样。
(周飞洋在黑板上来做)
解:由题意有:∠O=90°,在RtΔABO中
∴AO=
=2.4(米)
又∵下滑了0.4米
∴OC=2.0米
在RtΔODC中
∴OD=
=1.5(米)
∴外移BD=0.8米
答:梯足将外移0.8米。
师:这与有的同学猜测的答案一样吗?
生:不一样。
师:做题应该是老老实实,不应该想当然的。
例3 再来看一道古代名题:
这是一道成书于公元前一世纪,距今约两千多年前的,《九章算术》中记录的一道古代趣题:
原题:“今有池,方一丈,葭生其中央,出水一尺。引葭赴岸,适与岸齐,问水深、葭长各几何?”
师:谁来给大家说一说:“葭”如何读?并请解释是什么意思?
黄尚剑:葭(jiā),是芦苇的意思。
师:[1] [2] 下一页
,勾股定理的应用教学设计