学习目标:
1、经历用数格子的办法探索勾股定理的过程,进一步发展学生的合情推理意识,主动探究的习惯,进一步体会数学与现实生活的紧密联系。
2 、探索并理解直角三角形的三边之间的数量关系,进一步发展学生的说理和简单推理的意识及能力。
学习重点:了解勾股定理的由来并能用它解决一些简单问题。
学习难点:勾股定理的发现。
学习过程:
一.学前准备:
阅读课本第52页到54页。完成下列问题:
(1) 观察课本第52页几幅图回答:
①观察这枚邮票图案小方格的个数,你有什么发现?
②你能分别计算以BC、AC、AB为边的正方形的面积吗?你有什么发现?
(2)在课本第53页方格纸上完成在方格纸上,画一个顶点都在格点上的直角三角形;并分别以这个直角三角形的各边为一边向三角形外作正方形,仿照上面的方法计算以直角边、斜边为一边的正方形的面积. 你又有什么发现?
(3)勾股定理的文字表述和式子表述。
(4)说说勾股定理的作用。
二.自学、合作探究:
(一)自学、相信自己:
完成课本第54页练习1、2
(二)思索、交流:
例1、如图,梯子AB靠在墙上,梯子的底端A到墙根O的距离为3m,梯子的顶端A向外移动到A',使梯子的底端A'到墙根O的距离等于4m,同时梯子的顶端B下降至B',求BB'的长(梯子AB的长为5 m)。
例2、已知:Rt△ABC中,AB=4,AC=3,则BC2的长为 .
例3、一盒子长,宽,高分别是4米,3米和12米,盒内可放的棍子最长有多长?(画出示意图并求解)
(三)应用、探究:
1、如图, 折叠长方形的一边AD,点D落在BC边点F处,已知AB=8cm,BC=10cm,
(1)你能说出图中哪些线段的长?
(2)求EC的长.
2、有一个圆柱,它的高等于12厘米,底面半径等于3厘米.在圆行柱的底面A点有一只蚂蚁,它想吃到上底面上与A点相对的B点处的食物,需要爬行的的最短路程是多少?(π的值取3).
(1)同学们可自己做一个圆柱,尝试从A点到B点沿圆柱的侧面画出几条路线,你觉得哪条路线最短呢?
(2)如图,将圆柱侧面剪开展开成一个长方形,从A点到B 点的最短路线是什么?你画对了吗?
(3)蚂蚁从A点出发,想吃到B点上的食物,它沿圆柱侧面爬行的最短路程是多少?
我们知道,圆柱的侧面展开图是一长方形 ,用剪刀沿母线AA′将圆柱的侧面展开(如下图).
我们不难发现,刚才几位同学的走法:
(1)A→A′→B; (2)A→B′→B;(3)A→D→B; (4)A-→B.
哪条路线是最短呢?你画对了吗?
三.学习体会:
四.自我测试:
1、在Rt△ABC中,∠C=90°(1)若a=5,b=12,则c=________;(2)b=8,c=17,则S△ABC=________。
2、下列各图中所示的线段的长度或正方形的面积为多少。(注:下列各图中的三角形均为直角三角形)
答:A=________,y=________,B=________。
3、已知甲往东走了4km,乙往南走了3km,这时甲、乙俩人相距
4、如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形A,B,C,D的面积之和为___________cm2。
5、在Rt△ABC中,∠C=90,周长为60,斜边与一条直角边之比为13∶5,则这个三角形三边长分别是 ( )
A、5、4、3、; B、13、12、5; C、10、8、6; D、26、24、10
6、如图,一圆柱高8cm,底面半径2cm,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程( 取3)是 ( )
A.20cm; B.10cm; C.14cm; D.无法确定.
7、若等腰三角形中相等的两边长为10cm,第三边长为16 cm,那么第三边上的高为 ( )
tag: , 八年级数学教学设计,八年级数学教学设计大全,教学设计 - 数学教学设计 - 八年级数学教学设计